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INTRODUCTION

The X-24B research aircraft is one of a series of vehicles with a geometric shape that permits both

entry to the earth's atmosphere and horizontal landing. Prior vehicle shapes intended for this purpose

include those of the M-2, HL-10, and X-24A research aircraft. The design of those vehicles, called lifting

bodies, was conceptually constrained by the level of high temperature material technology, which

dictated a blunt, wingless shape. However, recent advances in high temperature materials allowed the

X-24B aircraft to be designed with a highly swept delta wing, which permits more efficient hypersonic

cruise. Much of the X-24B research aircraft was constructed by using the hardware and structure of the
X-24A research vehicle.

The X-24B vehicle was flight tested in a research program that was conducted jointly by the National

Aeronautics and Space Administration (NASA) and the United States Air Force. During the envelope

expansion part of the flight program, flight derivatives were acquired to update the flight simulator,

which was used for flight planning, pilot training, and handling qualities and control system studies, and

to update the analysis of the vehicle dynamics and handling qualities to insure safety of flight. Further-

more, by correlating the flight derivatives with wind-tunnel predictions, another program goal was

attained--the provision of a data base with which experimental and analytical prediction techniques for

this class of aircraft could be improved.

This report presents the correlation between the flight-determined derivatives and wind-tunnel

predictions for the first 21 flights of the X-24B research aircraft. The flight derivatives were obtained

with a modified maximum likelihood estimation method used at the NASA Flight Research Center. Pre-

vious experience with this estimation method for related configurations is discussed in references 1 and 2.
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Derivatives are presented as standard NASA coefficients of forces and moments. A right-hand sign

convention is used to determine the direction of forces, moments, angular displacements, and velocity.
Data are referenced to the vehicle body axes.

Physical quantities are given in the International System of Units (SI) and parenthetically in U.S.

Customary Units. All measurements were taken in U.S. Customary Units.

reference airplane span, m (ft)

reference aircraft length, m (ft)

rolling moment of inertia, kg-m 2 (slug-ft 2)

product of inertia, kg-m 2 (slug-ft 2)

pitching moment of inertia, kg-m 2 (slug-ft 2)

yawing moment of inertia, kg-m 2 (slug-ft 2)

Mach number

p rolling rate, deg/sec

q pitching rate, deg/sec
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X-24B RESEARCH AIRCRAFT

The X-24B research aircraft (fig. 1) has a highly swept delta planform with three vertical fins and a

boattailed afterbody. Combinations of the four chambers of the XLR11 rocket engine are used in pow-

ered flight. Aircraft dimensions are shown in figure 2, and aircraft physical characteristics are given in

table 1. Typical variations of the moments of inertia and center of gravity with changes in gross weight

are presented in table 2.

Flight Control System

The primary manual control system was an irreversible hydraulic system. The pilot controlled the

aircraft through a conventional center stick and rudder pedals. The primary aircraft control surface move-

ments, which were activated by both pilot inputs and the stability augmentation system, were symmetric

deflection of the two lower flaps for pitch, differential deflection of the strake ailerons for roll, and

deflection of the upper rudders for yaw. The control surface locations and sign convention are shown in

figure 3.

The primary stability augmentation system was a three-axis rate feedback system. An interconnect

provided a rudder control input in addition to an aileron control input for a pilot-commanded aileron

input. The rate feedback and interconnect gains could be adjusted by the pilot in flight. The pilot could

also select an automatic mode for the interconnect gain; in the automatic mode, the gain was varied as a

function of angle of attack.

Aircraft Configuration

Two aircraft configurations were used to obtain the data presented in this report. A subsonic configu-

ration was used to achieve good aerodynamic performance with adequate stability at subsonic speeds,

and a transonic configuration was used to achieve good stability at transonic and supersonic speeds. In

the subsonic configuration, the upper flaps were biased 20 ° above the upper surface of the body (i.e.,

Sub = --20°), and the rudders were biased (toed in) 10° (i.e., 8% = -10°). In the transonic configuration,

SUb -- -'-40° and _rb -" 0 °. In both configurations, both ailerons were biased down 7" (i.e., 8% = 7°),

which increased the camber of the strakes.



INSTRUMENTATION

Data were obtained by means of a 9-bit pulse code modulation telemetry system and were analyzed

by using a ground-based computer.

Angle of attack and angle of sideslip were measured by using an instrumented NACA nose boom

(ref. 3). Angular positions were measured by using a stable platform; angular rates were measured by

using rate gyros; and linear accelerations were measured by using conventional accelerometers. Control

surface positions were measured by using control position transducers.

Corrections were applied to angle of attack and angle of sideslip data for angular rates and boom

bending. Upwash corrections were found to be negligible in windtunnel tests and were therefore ignored.

Velocity, altitude, and Mach number were calculated on the basis of corrected dynamic and static pres-

sures. Linear accelerations were corrected for displacement from the center of gravity. Previous error

analyses of NASA Flight Research Center instrumentation systems have shown the instrumentation

errors to be negligible for derivative extraction.

FLIGHT TESTS

Weight and balance measurements were made as needed to verify the location of the aircraft's center

of gravity, which varied from 0.65_ to 0.66_. Moments of inertia were determined experimentally

before the first flight by means of an inertia swing technique. Flight values for the inertial were calculated

based on the current aircraft changes and propellant utilization.

The X-24B aircraft was air launched from a modified B-52 airplane at an altitude of approximately

13,700 meters (45,000 feet) and a Mach number of approximately 0.7. After launch, the pilot flew a

planned flight profile. The unpowered flights lasted approximately 4 minutes and were conducted below

a Mach number of 0.7. For the powered flights, the rocket engine was fired approximately 5 seconds after

launch and was operated for approximately 130 seconds. The powered boost was followed by gliding

flight. The entire flight lasted approximately 7 minutes. For both types of flights, an angle of attack sched-

ule was flown to achieve the desired flight profile and flight conditions for the planned data maneuvers.

In general, the maneuvers from which vehicle data were obtained were performed at altitudes above

approximately 6100 meters (20,000 feet) to allow the pilot enough time to prepare for the final approach

and landing. The trajectories flown precluded steady flight conditions. The vehicle's stability augmenta-

tion system was generally engaged while stability and control maneuvers were performed.

Because of the short time available for obtaining flight data and the rapid changes in the flight condi-

tions, there was only one opportunity to perform each maneuver per flight. Therefore, maneuvers were

practiced on a simulator before each flight. The longitudinal maneuver was a pulse or doublet of the

lower flaps followed by 2 seconds to 5 seconds without pilot input. The lateral-directional maneuver was

a rudder doublet followed by 2 seconds to 5 seconds without pilot input and then an aileron doublet. Data

were obtained over a Mach number range from 0.35 to 1.72 and over an angle of attack range from 3.5 °
to 15.7 ° .



METHOD OF ANALYSIS

A digital computer program that employed a maximum likelihood estimation method was used to

determine sets of derivatives in either the longitudinal or lateral-directional mode from the flight data. The

computer program and its use, theory, and mathematical model are documented in references 4 and 5.

WIND-TUNNEL DATA

The predictions used in this report are based on wind-tunnel data obtained from four wind-tunnel test

facilities. Most of the power-off data were acquired during a study conducted in the Cornell Aeronautical

Laboratory (now Calspan) 8-Foot Transonic Wind Tunnel; these data are for Mach numbers of 0.4, 0.6,

0.7, 0.8, 0.9, 0.95, 1.0, 1.15, and 1.3. The power-off data obtained at Mach numbers of 1.5 and 1.72 were

obtained at the Arnold Engineering Development Center von Kfirm_in Gas Dynamics Facility Supersonic

Wind Tunnel A (refs. 6 and 7). The power-on increments for Mach numbers of 0.6, 0.8, 0.9, 0.95, and

1.2, as well as limited power-off data at Mach numbers of 0.6, 0.7, and 0.8, were obtained in the Langley

16-Foot Transonic Tunnel. To show the effects of the gear, limited data were obtained at the Air Force

Institute of Technology 5-Foot Subsonic Wind Tunnel for a Mach number of 0.17 with the gear both up

and clown (ref. 8).

To account properly for the effects of rocket power on the vehicle's aerodynamics in wind-tunnel

testing, both the rocket's momentum flux ratio and pressure ratio should be duplicated. However, this is

not physically possible in a scaled model test. To approximate the effects of power on the X-24B deriva-

tives, two sets of windtunnel tests were conducted, first with the momentum flux ratio scaled properly

and then with the pressure ratio scaled properly. The maximum incremental changes in the derivatives

due to power from these two sets of wind-tunnel tests were added to the best power-off predictions to

indicate the trend due to power. As a result, the power-on data should be used to indicate trends and not

actual values. Since power-on data were not obtained at Mach numbers greater than 1.2, the increments

for a Mach number of 1.2 were applied to all data above this Mach number. This procedure further

degraded the power-on wind-tunnel predictions.

All predicted damping derivatives were estimated as a function of Mach number before the first

flight. The total damping derivatives are represented in this report by their rotary derivative counterparts.

DATA PRESENTATION AND DISCUSSION

Most of the following discussion concerns differences between flight and predicted results. Deriva-

tives that do not greatly affect the aircraft's response are not discussed in detail. Furthermore, not all

derivatives were obtained from each maneuver, and some that were obtained were considered invalid and

are therefore not presented. On the whole, the consistency of the flight derivatives and their correlation

with the wind-tunnel predictions were better than expected based on past experience. The flight deriva-

tives, which were obtained by using a modified maximum likelihood estimation method, provided good
documentation of the aircraft's characteristics.

Uncertainty levels were obtained at the same time as the flight derivatives in the computer program

analysis. These uncertainty levels are a measure of the amount of information provided by a maneuver for

each derivative. For most maneuvers analyzed, they can also be interpreted as a measure of the accuracy



of the derivativevalue.Usually, if the magnitudeof theuncertaintylevel is large,the accuracyof the
derivativevalue is poor.However,theconverseis notnecessarilytrue.In thefigures,uncertaintylevels
are shown only if their boundariesare outsidethe spaceoccupiedby the symbol that represents
thederivative.

Longitudinal Derivatives

Flight and wind-tunnel longitudinal derivatives are compared in figures 4 to 10 for Mach numbers

from 0.4 to 1.5. The effects of configuration changes are shown in figures 4 and 5; the effects of power

are shown in figures 5, 6, 8, 9, and 10.

In the Mach number range from 0.47 to 0.92 (figs. 4 to 6), the longitudinal static stability parameter,

Cma, is smaller than predicted and the primary longitudinal control effectiveness parameter, Cm_ e, is the

same as or slightly greater than predicted. The longitudinal damping parameter, Cmq, is generally lower

than estimated in the subsonic configuration (fig. 4). For the transonic configuration, however, Cmq is

near predictions for Mach numbers less than 0.75 (fig. 5) and usually greater than estimated at Mach

numbers between 0.75 and 0.92 (fig. 6). The flight-determined coefficient of normal force due to angle of

attack, CNa, should correspond to predictions based on untrimmed longitudinal control settings. How-

ever, the flight derivatives are generally below the untrimmed predictions and above the trimmed predic-

tions. The flight-determined coefficient of normal force due to lower flap, CNs , agrees reasonably well
e

with the wind-tunnel predictions. No power effects are apparent in the four power-on points in figures 5
and 6.

Only two flight data points were obtained at Mach numbers near 0.95 (fig. 7). They indicate Cma to

be slightly smaller than predicted and Cm_ to remain greater than predicted. The flight value of Cmq
e

does not agree with the estimated value. It may not be possible to determine a consistent value for Cmo in

the Mach number range from 0.85 to 1.35, because the normal unsteadiness of the transonic flow is

aggravated by regions of separated flow on the aft part of the aircraft. Tuft studies confirmed the exist-

ence of the separated flow regions. In addition, the airplane's response is overdamped by the stability

augmentation system. The flight values for CN, ' and CN_ have higher than usual uncertainty levels, but
e

for the transonic region the data are considered to be good.

In the Mach number range between 0.98 and 1.33 (figs. 8 and 9), Cma is usually smaller than pre-

dicted and Cr% is slightly greater. The flight values for CNa are smaller than the untrimmed predictions,
e

and CN_ is close to predictions. Smaller power-on values for Crno_ and CNa indicate a power effect.
e
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The flight dataobtainedaboveaMachnumberof 1.33(fig. 10)indicateCma and Cm8 to be greater
e

than predicted and Cmq to be lower than predicted. The flight values of CNc _ are lower than the

untrimmed predictions, and CN5 is near the predictions. The effects of power are slight.
e

Figure 11 summarizes Cma and Cm8 for the angle of attack range from 4" to 12°. The data show
e

Cmr L to be generally smaller than predicted and Cma to be slightly greater than predicted.
e

Lateral-Directional Derivatives

It was predicted that the static stability derivatives, fir _ , C% , and Cyf_ , and the rudder derivatives,

CI8 r, Cn8 _, and Cy8 _, would be affected by airplane configuration, so the derivatives for the two aircraft

configurations are presented separately in figure 12. The aileron derivatives, Ct_ , Cn_ , and Cy8 , were
a a a

neither predicted nor found to be configuration sensitive. The damping derivatives, tip, Cne, CI, and

Cnr, were not found to be configuration sensitive. Therefore the aileron and damping derivatives for both

configurations are shown in the same plots in figure 12.

As shown by figures 12(a) and 12(b), CnB is usually greater than predicted at Mach numbers less than

approximately 0.7. In figures 12(c), 12(d), and 12(e), the primary control derivatives, Cn_ and CI_ , are
r a

at the same level or greater than predicted, and Cn8 is at the same level or smaller than predicted. In fig-
a

ure 12(f), Clp is higher than estimated and Cnp is less positive than estimated. Good flight estimates of

fir and Cn_ were not obtained because only small yaw rates were generated.

Predictions indicated that power affected and at or above a Mach number of 0.8. A powerC lf_ C %

effect was also predicted for above a Mach number of 0.95. To show the power-on predictions for
Cyp

these derivatives, a separate plot is used for each wind-tunnel Mach number in figures 13 to 16. It should

be remembered that the power-on predictions are based on the maximum wind-tunnel power-on
increment and that the trends rather than the values of the data should be considered. The other deriva-

tives were less sensitive to Mach number and power, and therefore data for ranges of Mach numbers are

plotted together.

For two reasons, the Mach number region from 0.8 to 1.0 (fig. 13) is the most difficult in which to

obtain consistent results. First, aerodynamic nonlinearities occur because of the complex nature of the

transonic flow. The uncertainty levels in this region are often large, particularly at high angles of attack,

7



which indicatesthattheestimatesof theflight derivativesarepoor.Second,thesensitivityof thederiva-
tivesto Machnumberis greatestbetweenMachnumbersof 0.9and1.0.Becauseof this, smallvariations
in Machnumbercausescatterin thedata.This is alsoaproblemin otherMachnumberranges,but to a
lesserextent.

Thestaticstability derivativesobtainednearMachnumbersof 0.8,0.9, and0.95(fig. 13(a))indicate
areductionin staticstabilitydueto theeffectsof powerandangleof attacknearaMachnumberof 0.95.

Figure 13(b)indicatesthat Cn5 r was greater than predicted. Results from figures 13(b) and 13(c) indicate

that CI_ and CI_ were the same as predicted, but that Cn_ was smaller. In figure 13(d), Ctn was the

same as estimated.

Derivatives obtained near Mach numbers of 1.0, 1.1, and 1.2 are presented in figure 14. The

power-off flight values for CI_ and Cn_ near a Mach number of 1.0 (fig. 14(a)) are near the predicted val-

ues at low angles of attack and greater than predicted at high angles of attack. The flight values of Clf_

and Cn_ near a Mach number of 1.1 (fig. 14(a)) are near the predictions, and the power-off values of Clf_

and Cn_ near a Mach number of 1.2 are smaller than predicted. From figure 14(a) it is apparent that the

power-on flight data are generally at a lower stability level than the power-off flight data. In figures 14(b)

and 14(c), CI_ and Cn_ are near predictions, whereas CI_ is greater than predicted. The derivative
r r a

Cn5 is smaller than predicted at low angles of attack.

The derivatives obtained near Mach numbers of 1.3, 1.4, and 1.5 are presented in figure 15; deriva-

tives obtained near a Mach number of 1.6 are presented in figure 16. Figures 15(a) and 16(a) show that

Clf_ is reasonably close to predictions; therefore, changes in static stability are attributed to changes in

Cnf _, which is generally smaller than predicted. The derivative Cnf_ decreases to a relatively low level at

the higher angles of attack. Again, the power-on flight data are at a lower level of stability than the

power-off flight data. Figures 15(b) and 16(b) show that Cn_ is lower than predicted. Figures 15(c) and
r

16(c) show Ct_ to be at the same level as or higher than predicted and Cn_ to be lower than predicted.
a a

The trends of selected derivatives with Mach number are summarized in figure 17. Derivatives

obtained from flight data in the angle of attack ranges from 3.6 ° to 4.8 ° and 7 ° to 8.2 ° are compared with

interpolated power-off wind-tunnel predictions for 4 ° and 7.5 °. At Mach numbers less than 1.35,

power-off values of Clf j were generally slightly smaller than predicted, whereas at Mach numbers greater

than 1.35 the power-off values of CI_ were slightly greater than predicted. Power-off values for Cn_ were

greater than predictions for Mach numbers less than approximately 0.7 and equal to or less than predic-

tions for higher Mach numbers. The power-on flight values for and were generally smaller than
Cl_ Cn_



the power-off flight values. The derivative CI_ is usually slightly greater than predicted, with no appar-
tq

ent power effect. The derivative Cn8 is greater than predicted at Mach numbers less than approximately
r

1.3 but smaller than predicted at higher Mach numbers. Power had no apparent effect on Cn8.
r

Discontinuities occurred in Cn9 with increasing Mach number near angles of attack of 7.6 ° and 9.6 °

(fig. 18). These nearly instantaneous changes in stability were correlated with step changes in pressure

and visual observations of changes in flow pattems on the inboard side of the outboard vertical fins.

These effects, which were not predicted, occurred as a function of Mach number and angle of attack.

Figure 19 is presented to give an indication of the spread of the data in an area of poor stability. The

two flagged points are from maneuvers for which the match of the computed and measured time histories

was poor. The resulting derivatives are not considered to be very reliable; however, it may not be possible

to obtain better results because this area is traversed quickly and is difficult to analyze.

The reference 8 wind-tunnel predictions for a Mach number of 0.17 indicated that the gear-down val-

ues of C% were unacceptably low. However, the gear-up predictions from reference 8 were also lower

than the gear-up predictions from the subsonic (Mach 0.4) Cornell wind-tunnel tests. One gear-down

maneuver was performed during the flare prior to landing and yielded the result presented in figure 20.

Of primary importance is the high level of Cnf_ that was obtained in flight with the gear down. However,

a comparison of the flight gear-down data point with the flight gear-up data also shows that the effect of

extending the gear on CnB appears to be approximately the same as the incremental effect predicted by

the 0.17 Mach number wind-tunnel tests.

The side-force derivatives, Cyf, CYSr, and CY_a, have not been discussed at length, because CyB

was always near predictions, and although Cy8 r and Cy8 a usually differed from the predictions, they

rarely affect aircraft handling qualities.

CONCLUSIONS

Estimates of the longitudinal and lateral-directional aerodynamic derivatives for the X-24B research

aircraft were obtained from flight data by using a modified maximum likelihood estimation method. The

flight derivatives were consistent and provided a good documentation of the aircraft' s characteristics. The

correlation between the flight and wind-tunnel data can be summarized as follows:

(1) The longitudinal static stability derivative, Cmct, was generally smaller than predicted. Some

reductions due to power occurred, but the reductions were not consistent.

(2) The longitudinal control effectiveness derivative, Cm_ , was generally greater than predicted.
e
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(3) The change in the coefficient of normal force due to angle of attack, CN, was smaller than the
predictions based on untrimmed flight.

(4) At Mach numbers less than approximately 1.35, the power-off values for the lateral-directional

static stability derivative, CI_ , were generally slightly smaller than predicted. At higher Mach numbers,

power-off values for CI_ were generally slightly greater than predicted. The power-on flight values were

smaller than the power-off values.

(5) At Mach numbers less than approximately 0.7, the power-off values for the lateral-directional

static stability derivative, C%, were higher than predicted. At higher Mach numbers, power-off values

for C% were smaller than predicted. Power-on flight values were smaller than the power-off values.

(6) The rudder control effectiveness derivative, Cn_ , was greater than predicted at Mach numbers
r

below 1.3 and smaller than predicted at higher Mach numbers.

(7) The aileron control effectiveness derivative, Cl_ , was slightly greater than predicted.
a

(8) The yaw due to aileron derivative, Cnsa, was usually smaller than predicted.

Dryden Flight Research Center

National Aeronautics and Space Administration

Edwards, California, 93523

June 1, 1975
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Table 1.Physicalcharacteristicsof X-24B researchaircraft.

Body -
Referenceplanformarea,m2(ft2)
Referencelongitudinallength,m (ft)
Referencespan,m (ft)
Leadingedgesweep,deg

Outboardverticalfins, each-
Area,m2(ft2)
Rootchord,m (ft)
Tip chord,m (ft)
Span,m (ft)
Leadingedgesweep,deg

Centerfin -
Area,m2(ft2) .
Rootchord,m (ft)
Tip chord,m (ft)
Span,m (ft)
Leadingedgesweep,deg

Strake-
Area,m2(ft2)
Chord,m (ft)
Span,m (ft)
Leadingedgesweep,deg.

Ailerons,each-
Area,m2 (ft 2)

Chord, m (ft)

Span, m (ft)

Bias deflection, deg.

Deflection from bias position, deg .

Upper flaps, each -
Area, m 2 (ft 2)

Chord, m (ft)

Span, m (fl)

Deflection, deg.

Lower flaps, each -

Area, m 2 (ft 2) .

Chord, m (ft)

Span, m (ft)

Deflection, deg

30.704 (330.50)

11.43 (37.50)

5.791 (19.00)

78

2.406 (25.90)

2.578 (8.46)

1.054 (3.46)

1.273 (4.18)

55

1.366 (14.70)

1.877 (6.16)

0.965 (3.17)

0.985 (3.23)
55

2.897 (31.18)

2.860 (9.38)

1.267 (4.16)

72

1.369 (14.74)

1.212 (3.98)

1.267 (4.16)
3to 11

+_5

1.005 (10.82)
0.866 (2.84)

1.161 (3.81)

0 to -60

1.300 (13.99)

1.140 (3.74)

1.140 (3.74)

0 to 40
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Table1.Concluded.

Upperrudders,each-
Aream2(ft2)
Chord,m (ft)
Span,m (ft)
Biasdeflection,deg.
Deflection from biasposition,deg

Lower rudders,each-
Area,m2(ft2)
Chord,m (fl)
Span,m (ft)
Biasdeflection,deg.

0.464(4.99)
0.752(2.47)
0.615(2.02)

+10

+15

0.620 (6.67)

0.752 (2.47)

0.823 (2.70)

+10

Table 2. Typical variation of moments of inertia and center of gravity with gross weight.

Center of

Gross weight, Ix, I y , IZ , I xz , gravity,

kg (lb) kg -m2 (slug -ft2) kg -m2 (slug-fl 2) kg-m 2 (slug-fl 2) kg-m 2 (slug-ft 2) per

6,260 4,352 33,720 34,670 1,120
0.6616

( 13,800) (3,210) (24,870) (25,570) (829)

5,810 4,181 33,480 34,380 1,060
0.6600

(12,800) (3,084) (24,690) (25,360) (785)

5,350 4,051 33,330 34,150 1,030
0.6577

(11,800) (2,988) (24,580) (25,190) (760)

4,850 3,921 33,180 33,900 982
0.6536

(10,700) (2,892) (24,470) (25,000) (724)

4,350 3,747 32,810 33,450 944
0.6510

(9,600) (2,764) (24,200) (24,670) (696)

3,860 3,592 32,150 32,700 841
0.6421

(8,500) (2,650) (23,710) (24,120) (620)
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Figure 1.X-24Bresearchaircraftin flight.
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Figure 4. Comparison of longitudinal derivatives obtained from flight data with wind-tunnel results.
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Figure 5. Comparison of longitudinal derivatives obtained from flight data with wind-tunnel results.
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Figure 6. Comparison of longitudinal derivatives obtained from flight data with wind-tunnel results.

M = 0.75 to 0.92; transonic configuration; center of gravity = 0.66_.
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Figure 8. Comparison of longitudinal derivatives obtained from flight data with wind-tunnel results.
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Figure 9. Comparison of longitudinal derivatives obtained from flight data with wind-tunnel results.
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Figure 10. Comparison of longitudinal derivatives obtained from flight data with wind-tunnel results.
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29



M

o 1.40 to L43
Flighto 1.4g

1.4 Interpolatedwindtunnel
].5 Windtunnel

Solid symbolsdenotepoweron
I Uncertainty level

CN .
Q

per deg

CN ,
6e

per
.OO4

/--Untrimmed

Trimmed

I I I I I

JL-

I I I I I
0 4 8 12 16 20

(b) CNo _, CNG .
e

Figure 10. Concluded.

30



Configuration

a° TransoniCsubsonic} Flight,a=4°to 12°

Transonic_ Interpo_atedwind
Subsonict tunnel, e=8 °

Solidsymbolsdenotepoweron
Flagsindicatedataof lowerquality

]. Uncertaintylevel

3fCmj •

_r

/
o! I I ; ; I

_r

o I I I I I
.4 .6 .8 1.0 ;.2 1.4

M

I
1.6

Figure 11. Comparison of longitudinal derivatives obtained from flight data with wind-tunnel results.
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results. M = 0.42 to 0.75; center of gravity = 0.65_.
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Figure 14. Comparison of lateral-directional derivatives obtained from flight data with wind-tunnel

results. M = 0.98 to 1.20; transonic configuration; center of gravity = 0.65_:.
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Figure 16. Comparison of lateral-directional derivatives obtained from flight data with wind-tunnel
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Figure 17. Comparison of lateral-directional derivatives obtained from flight data with wind-tunnel

results for angles of attack near 4 ° and 7.5 °. Transonic configuration; center of gravity = 0.65_.
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Figure 18. Comparison of Cnp obtained from flight data with wind-tunnel results. Transonic configura-

tion; center of gravity = 0.65_.
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Figure 19. Comparison of Cl_ and Cnp obtained from flight data with wind-tunnel results for angles of

attack near 11.5 °. Transonic configuration; center of gravity = 0.65t.
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tunnel. Subsonic configuration; center of gravity = 0.65_.
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